
2026/02/09 05:22 1/2 데브옵스_devops_vs_기존의_접근_방식

문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12 - http://rwiki.repia.com/

데브옵스 VS 기존의 접근 방식

description : 데브옵스 VS 기존의 접근 방식

author : 밤즌

email : bjlee@repia.com
lastupdate : 2022-03-21

DevOps 진행 기존의 접근 방식

– 협업 중심.
성공적인 DevOps는 신속하고 신뢰성있는 소프트웨
어의
개발과 전달을 보장하기 위해 개발팀과 IT 운영팀의
성공적이고 지속적인 협업 능력에 의존한다.

– 사일로 중심.
기존의 접근 방식은 협업에 대해서는 “다짜고짜 떠
넘기기”에 의존한다.
IT 운영자는 실제 운영 환경에서 소프트웨어 배포
와 관리를 담당하며,
개발팀은 최소한의 지원을 제공합니다.

– 상당한 수준의 (또는 전체적) 구조화와 자동화.
DevOps 진행은 개발 환경에서의 작동이 프로덕션
환경에서의 작동을 보장하는 환경 프로비저닝과 구
성에서 속도, 일관성, 반복성을 제공하는 자동화에
의존합니다.
또한 구조적 접근 방식은 오류 복구를 반복 가능한
자동화만큼 빠르게 바꿔주므로 롤백과 복구가 편해
집니다.

– 눈송이 중심 및 대부분 수동.
기존의 접근 방식은 프로젝트를 제대로 수행하거
나 신뢰 가능하게 반복하거나 신속하게 진행하기
어렵습니다.
또한 개발 및 프로덕션 인프라스트럭처와 구성 패
리티를 신속하고 일관되게 프로비전하는 능력이
부족하므로 많은 문제에 봉착하는 경향이 있습니
다.

– 셀프 서비스 중심.
DevOps 중심 조직은 협업 및 자동화 프레임워크를
구축해 개발자와 IT 운영자에게 상대방에게 방해되
지 않고 독립적으로 일하도록 자율권을 줍니다.
예를 들어 개발자는 IT 운영자의 직접적인 프로비저
닝을 기다리지 않고 신속하게 개발/테스트 환경을
자체적으로 프로비전할 수 있습니다.

– “정보 기술 (IT) 티켓” 중심.
기존의 엔터프라이즈 접근 방식에서 IT 운영자는
쉽게 자동화 가능한
IT 티켓 관리 작업을 수행하고 반복적이고 복잡한
수동 프로비저닝과 구성을 진행해야 합니다.
그 결과 프로비저닝, 배포, 크기 조정, 다른 소프트
웨어 전달 및 관리 활동이 상당히 복잡해지고 지연
됩니다.

– 비즈니스 중심.
DevOps 조직은 공동으로 비즈니스 성공을 추진하
는데 집중한다. 그러므로 소프트웨어 전달 성공에
대한 책임도 공동으로 집니다.

– 기능 중심.
기존의 접근 방식은 개발자와 IT 운영자가 그들 기
능에 집중하되
전체적인 성공에 대해서는 별다른 책임을 부여하
지 않았습니다.
그 결과 여러 에러 상황이 발생해 많은 비난을 받
고 조직내에서 마찰이 발생합니다.

– 변경 맞춤형.
DevOps 진행은 신속하고 반복 가능하게 자동화하
도록 디자인됩니다. 신속한 오류 복구뿐만 아니라
신속한 변경 처리도 수행하게 빌드됩니다. 신속하게
진행하기 위해 빌드되는 것입니다.

– 변경 반대.
기존의 접근 방식에서는 손댔다가 빨리 복구할 수
없게 될까봐 프로덕션 배포를 변경하지 않습니다.
전통적인 접근 방식에서는 변경과 업데이트를 최
소화하고 조직에게는 천천히 진행할 것을 간접적
으로 권장합니다.

Term

사일로 현상(Organizational Silos Effect): 조직 부서 간에 서로 협력하지 않고 내부 이익만을 추구



Last
update:
2022/03/22
11:07

wiki:pm:devops:데브옵
스_devops_vs_기존의_접근_

방식
http://rwiki.repia.com/doku.php?id=wiki:pm:devops:%EB%8D%B0%EB%B8%8C%EC%98%B5%EC%8A%A4_devops_vs_%EA%B8%B0%EC%A1%B4%EC%9D%98_%EC%A0%91%EA%B7%BC_%EB%B0%A9%EC%8B%9D&rev=1647914869

http://rwiki.repia.com/ Printed on 2026/02/09 05:22

하는 현상.
프로비저닝(Provisioning): 사용자의 요구에 맞게 시스템 자체를 제공 하는 것
시스템 자원을 할당, 배치, 배포해두었다가 필요할 때 즉시 사용할 수 있는 상태로 미리 준비해두
는 것
인프라 자원이나 서비스, 또는 장비가 될 수도 있음.
패리티(parity): 데이터 한 블록 끝에 에러를 검출하기 위해 추가하는 1비트의 검사 비트

Ref

https://tanzu.vmware.com/kr/devops

데브옵스, DevOps, 밤즌

From:
http://rwiki.repia.com/ - 문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12

Permanent link:
http://rwiki.repia.com/doku.php?id=wiki:pm:devops:%EB%8D%B0%EB%B8%8C%EC%98%B5%EC%8A%A4_devops_vs_%EA%B8%B0%EC%A1%B4%EC%9D%98_%EC%A0%91%EA%B7%BC_%EB%B0%A9%EC%8B%9D&rev=1647914869

Last update: 2022/03/22 11:07

https://tanzu.vmware.com/kr/devops
http://rwiki.repia.com/doku.php?id=tag:%EB%8D%B0%EB%B8%8C%EC%98%B5%EC%8A%A4&do=showtag&tag=%EB%8D%B0%EB%B8%8C%EC%98%B5%EC%8A%A4
http://rwiki.repia.com/doku.php?id=tag:devops&do=showtag&tag=DevOps
http://rwiki.repia.com/doku.php?id=tag:%EB%B0%A4%EC%A6%8C&do=showtag&tag=%EB%B0%A4%EC%A6%8C
http://rwiki.repia.com/
http://rwiki.repia.com/doku.php?id=wiki:pm:devops:%EB%8D%B0%EB%B8%8C%EC%98%B5%EC%8A%A4_devops_vs_%EA%B8%B0%EC%A1%B4%EC%9D%98_%EC%A0%91%EA%B7%BC_%EB%B0%A9%EC%8B%9D&rev=1647914869

	[데브옵스 VS 기존의 접근 방식]
	데브옵스 VS 기존의 접근 방식
	Term
	Ref


