
2026/02/08 22:18 1/11 JUnit A Cook's Tour

문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12 - http://rwiki.repia.com/

JUnit A Cook's Tour

참고 :이 기사는 JUnit 3.8.x를 기반으로합니다.

1. 소개

이전 기사 (Test Infected : Programmers Love Writing Tests, Java Report, July
1998, Volume 3, Number 7 참조)에서
간단한 프레임 워크를 사용하여 반복 가능한 테스트를 작성하는 방법을 설명했습니다.
이 기사에서는 내부를 들여다보고 프레임워크 자체가 어떻게 구성되는지 보여줄 것입니다.

우리는 JUnit 프레임워크를 주의 깊게 연구하고 어떻게 구성했는지를 반영했습니다.
우리는 다양한 수준에서 수업을 찾았습니다.
이 기사에서 우리는 그것들을 한꺼번에 전달하려고 시도할 것입니다.
이것은 절망적인 작업이지만, 적어도 검증된 가치를 가진 소프트웨어의 디자인과 구성을 보여주기 위
해 그렇게 할 것입니다.

우리는 프레임 워크의 목표에 대한 토론으로 시작합니다.
목표는 프레임 워크 자체를 표시하는 동안 많은 작은 세부 사항으로 다시 나타납니다.
다음으로 프레임 워크의 설계 및 구현에 대해 설명합니다.
디자인은 문해력있는 프로그램으로 구현되는 패턴 (놀라움, 놀라움)의 관점에서 설명 될 것입니다.
프레임 워크 개발에 대한 몇 가지 선택 사항으로 결론을 내립니다.

2. 목표

JUnit의 목표는 무엇입니까?

먼저, 우리는 개발의 가정으로 돌아 가야합니다.
프로그램 기능에 자동화 된 테스트가없는 경우 작동하지 않는다고 가정합니다.
이것은 개발자가 프로그램 기능이 작동한다고 확신하면 지금은 영원히 작동한다는 일반적인 가정보다
훨씬 안전 해 보입니다.

이러한 관점에서 개발자는 코드를 작성하고 디버그 할 때 완료되지 않으며 프로그램이 작동 함을 보여
주는 테스트도 작성해야합니다.
하지만 모두가 너무 바쁘고, 할 일이 너무 많고, 테스트를 할 시간이 없습니다. 이미 작성할 코드가 너
무 많습니다.
테스트 코드도 어떻게 작성해야합니까? 대답 해주세요, 하드 케이스 프로젝트 매니저 씨.

따라서 가장 중요한 목표는 개발자가 실제로 테스트를 작성할 것이라는 희망이있는 프레임워크를 작성
하는 것입니다.
프레임 워크는 익숙한 도구를 사용해야 하므로 새로 배울 내용이 거의 없습니다.
새로운 테스트를 작성하는 데 절대적으로 필요한 것보다 더 많은 작업이 필요하지 않습니다.
중복된 노력을 제거해야합니다.

이 모든 테스트가 수행해야한다면 디버거에서 표현식을 작성하는 것만으로 완료됩니다.
그러나 이것은 테스트에 충분하지 않습니다.
귀하의 프로그램이 지금 작동한다고 말해도 도움이되지 않습니다.
통합 후 1 분 후에 귀하의 프로그램이 작동 할 것이라는 보장도없고 귀하의 프로그램이 5 년 후에도 계
속 작동 할 것이라는 보장도 없기 때문입니다.
당신이 오래 전에 떠났을 때.

따라서 테스트의 두 번째 목표는 시간이 지남에 따라 가치를 유지하는 테스트를 만드는 것입니다.
원래 작성자가 아닌 다른 사람이 테스트를 실행하고 결과를 해석 할 수 있어야합니다.
다양한 저자의 테스트를 결합하여 간섭에 대한 두려움없이 함께 실행할 수 있어야합니다.

Last update:
2022/03/10
19:52

wiki:java:junit:junit_a_cook_s_tour http://rwiki.repia.com/doku.php?id=wiki:java:junit:junit_a_cook_s_tour&rev=1598933127

http://rwiki.repia.com/ Printed on 2026/02/08 22:18

마지막으로 기존 테스트를 활용하여 새 테스트를 생성 할 수 있어야합니다.
설정 또는 고정 장치를 만드는 것은 비용이 많이 들고 프레임 워크는 고정 장치를 재사용하여 다른 테
스트를 실행할 수 있어야합니다. 오, 그게 다야?

3. JUnit의 디자인

JUnit의 디자인은 처음 사용 된 스타일로 제공됩니다 ("Patterns Generate
Architectures", Kent Beck 및 Ralph Johnson, ECOOP 94 참조).
아이디어는 시스템의 아키텍처를 가질 때까지 아무것도없이 시작하고 패턴을 차례로 적용하여 시스템
의 디자인을 설명하는 것입니다.
해결해야 할 아키텍처 문제를 제시하고이를 해결하는 패턴을 요약 한 다음 패턴이 JUnit에 어떻게 적
용되었는지 보여줍니다.

3.1 시작하기-TestCase

먼저 기본 개념 인 TestCase를 나타내는 개체를 만들어야합니다.
개발자는 종종 테스트 사례를 염두에두고 있지만 다양한 방법으로 이를 실현합니다.

인쇄 명세서,
디버거 표현식,
테스트 스크립트.

테스트를 쉽게 조작하려면 객체를 만들어야합니다.
이것은 개발자의 마음 속에 내재 된 테스트를 거쳐 구체적으로 만들어 시간이 지남에 따라 가치를 유지
하는 테스트를 만드는 우리의 목표를 지원합니다.
동시에 개체 개발자는 개체를 사용하여 개발하는 데 익숙하므로 테스트를 개체로 만들기로 한 결정은
테스트 작성을 더 매력적으로 (또는 최소한 덜 인상적으로) 만드는 우리의 목표를 지원합니다.
명령 패턴 (Gamma, E., et al. Design Patterns : Elements of Reusable Object-
Oriented Software, Addison-Wesley, Reading, MA, 1995 참조)은 우리의 요구에 아주 잘
맞습니다.
의도에서 인용하면 "요청을 객체로 캡슐화하여 요청을 대기열에 넣거나 기록 할 수 있습니다…"명령은
작업을위한 객체를 생성하고 "실행"메소드를 제공하도록 지시합니다.
다음은 TestCase의 클래스 정의에 대한 코드입니다.

public abstract class TestCase implements Test
{
 ...
}

이 클래스는 상속을 통해 재사용 될 것으로 예상하기 때문에 "공개 추상"으로 선언합니다.
지금은 테스트 인터페이스를 구현한다는 사실을 무시하십시오.
현재 디자인의 목적에 따라 TestCase를 고독한 클래스로 생각할 수 있습니다.

모든 TestCase는 이름으로 생성되므로 테스트가 실패하면 실패한 테스트를 식별 할 수 있습니다.

public abstract class TestCase implements Test
{
 private final String fName;
 public TestCase (String name) {
 fName = name;
 }

 public abstract void run ();

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/02/08 22:18 3/11 JUnit A Cook's Tour

문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12 - http://rwiki.repia.com/

 ...
}

JUnit의 진화를 설명하기 위해 아키텍처의 스냅 샷을 보여주는 다이어그램을 사용합니다.
우리가 사용하는 표기법은 간단합니다.
연관된 패턴을 포함하는 음영 처리 된 상자로 클래스에 주석을 답니다.
패턴에서 클래스의 역할이 분명하면 패턴 이름 만 표시됩니다.
역할이 명확하지 않으면 음영 처리 된 상자가이 클래스에 해당하는 참가자의 이름으로 확대됩니다.
이 표기법은 다이어그램의 혼란을 최소화하고 처음에 표시되었습니다 (Gamma, E., Applying
Design Patterns in Java, in Java Gems, SIGS Reference Library, 1997 참조).

그림 1은 TestCase에 적용된이 표기법을 보여줍니다. 단일 클래스를 다루고 있고 모호성이 없을 수
있기 때문에 패턴 이름 만 표시됩니다.

그림 1 TestCase 적용 명령

3.2 in-run ()을 채우기 위한 공백

다음으로 해결해야 할 문제는 개발자에게 픽스처 코드와 테스트 코드를 넣을 수있는 편리한 "장소"를
제공하는 것입니다.
TestCase를 추상으로 선언하면 개발자가 서브 클래 싱을 통해 TestCase를 재사용 할 것으로 예상
됩니다.
그러나 우리가 할 수있는 모든 것이 하나의 변수와 동작이없는 수퍼 클래스를 제공하는 것이라면
첫 번째 목표를 충족시키기 위해 많은 일을하지 않아서 테스트를 더 쉽게 작성할 수 있습니다.

다행히 모든 테스트에는 공통 구조가 있습니다.
테스트 픽스처를 설정하고 픽스처에 대해 일부 코드를 실행하고 일부 결과를 확인한 다음 픽스처를 정
리합니다.
이는 각 테스트가 새로운 고정 장치로 실행되고 한 테스트의 결과가 다른 테스트의 결과에 영향을 미칠
수 없음을 의미합니다.
이것은 테스트의 가치를 극대화하려는 목표를 지원합니다.

템플릿 방법은 우리의 문제를 아주 잘 해결합니다.
"작업에서 알고리즘의 골격을 정의하고 일부 단계를 하위 클래스로 연기합니다.
템플릿 방법을 사용하면 하위 클래스가 알고리즘의 구조를 변경하지 않고도 알고리즘의 특정 단계를
재정의 할 수 있습니다." 이것은 정확히 맞습니다.
우리는 개발자가 픽스쳐 (설정 및 해체) 코드를 작성하는 방법과 테스트 코드를 작성하는 방법을 별도
로 고려할 수 있기를 바랍니다.
그러나 이 시퀀스의 실행은 픽스처 코드가 작성되는 방법이나 테스트 코드가 작성되는 방법에 관계없
이 모든 테스트에 대해 동일하게 유지됩니다.

다음은 템플릿 방법입니다.

public void run()
{
 setUp ();
 runTest ();
 tearDown ();
}

이러한 메서드의 기본 구현은 아무 작업도 수행하지 않습니다.

protected void runTest ()
{
 ...

Last update:
2022/03/10
19:52

wiki:java:junit:junit_a_cook_s_tour http://rwiki.repia.com/doku.php?id=wiki:java:junit:junit_a_cook_s_tour&rev=1598933127

http://rwiki.repia.com/ Printed on 2026/02/08 22:18

}

protected void setUp ()
{
 ...
}

protected void tearDown ()
{
 ...
}

setUp 및 tearDown은 재정의 될 예정이지만 프레임워크에서 호출되므로 보호 된 것으로 선언합니다.
투어의 두 번째 스냅 샷은 그림 2에 나와 있습니다.

그림 2 TestCase.run ()은 템플릿 메서드를 적용합니다.

3.3 결과보고-테스트 결과

TestCase가 포리스트에서 실행되는 경우 누군가 결과에 관심이 있습니까? 물론입니다.
테스트를 실행하여 실행되는지 확인합니다.
테스트가 실행 된 후 작동 한 작업과 실행되지 않은 작업에 대한 요약을 기록해야합니다.

테스트가 성공하거나 실패 할 확률이 같거나 테스트를 한 번만 실행했다면 TestCase 객체에 플래그
를 설정하고
테스트가 완료되면 플래그를 살펴볼 수 있습니다. 그러나 테스트는 매우 비대칭 적이며 일반적으로 작
동합니다.
따라서 실패와 성공에 대한 매우 요약 된 요약 만 기록하려고합니다.

Smalltalk 모범 사례 패턴 (Beck, K. Smalltalk 모범 사례 패턴, Prentice Hall, 1996
참조)에는 적용 가능한 패턴이 있습니다.
매개 변수 수집 이라고 합니다. 여러 메소드에 대한 결과를 수집해야하는 경우 메소드에 매개 변수를
추가하고 결과를 수집 할 객체를 전달해야합니다.
테스트 실행 결과를 수집하기 위해 새 개체 인 TestResult를 만듭니다.

public class TestResult extends Object
{
 protected int fRunTests;
 public TestResult () {
 fRunTests = 0;
 }
}

이 간단한 TestResult 버전은 실행 된 테스트 수만 계산합니다.

이를 사용하려면 TestCase.run () 메서드에 매개 변수를 추가하고 TestResult에 테스트가 실
행 중임을 알려야합니다.

public void run (TestResult 결과) {
 result.startTest (this);
 설정();
 runTest ();
 tearDown ();

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+object

2026/02/08 22:18 5/11 JUnit A Cook's Tour

문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12 - http://rwiki.repia.com/

}

그리고 TestResult는 실행 된 테스트의 수를 추적해야합니다.

 공개 동기화 무효 startTest (테스트 테스트) {
 fRunTests ++;
}

테스트가 다른 스레드에서 실행될 때 단일 TestResult가 결과를 안전하게 수집 할 수 있도록

TestResult 메서드 startTest를 동기화 된 것으로 선언합니다.

마지막으로 TestCase의 간단한 외부 인터페이스를 유지하려고하므로 자체 TestResult를 생성하

는 매개 변수없는 run () 버전을 생성합니다.

public TestResult run () {
 TestResult 결과 = createResult ();
 실행 (결과);
 반환 결과;
}

protected TestResult createResult () {
 return new TestResult ();
}

그림 3은 다음 설계 스냅 샷을 보여줍니다.

그림 3 : TestResult에 수집 매개 변수 적용

테스트가 항상 올바르게 실행 되었다면 작성하지 않아도됩니다.
테스트는 실패 할 때 흥미 롭습니다.
특히 실패 할 것으로 예상하지 않은 경우 더욱 그렇습니다.
또한 테스트는 잘못된 결과를 계산하는 등 우리가 예상하는 방식으로 실패 할 수 있으며,
예를 들어 배열 경계를 벗어난 쓰기를 통해 더 멋진 방식으로 실패 할 수 있습니다.
테스트가 아무리 실패하더라도 다음 테스트를 실행하려고합니다.

JUnit은 실패 와 오류를 구분 합니다.
실패 가능성이 예상되고 어설 션으로 확인됩니다.
오류는 ArrayIndexOutOfBoundsException과 같은 예상치 못한 문제입니다.

실패는 AssertionFailedError 오류로 표시됩니다.

예상치 못한 오류와 실패를 구별하기 위해 추가 catch 절 (1)에서 실패를 포착합니다.
두 번째 절 (2)은 다른 모든 예외를 포착하고 테스트 실행이 계속되도록합니다.

public void run (TestResult 결과) {
 result.startTest (this);
 설정();
 시도 {
 runTest ();
 }
 catch (AssertionFailedError e) {// 1
 result.addFailure (this, e);
 }
 catch (Throwable e) {// 2
 result.addError (this, e);

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

Last update:
2022/03/10
19:52

wiki:java:junit:junit_a_cook_s_tour http://rwiki.repia.com/doku.php?id=wiki:java:junit:junit_a_cook_s_tour&rev=1598933127

http://rwiki.repia.com/ Printed on 2026/02/08 22:18

 }
 마침내 {
 tearDown ();
 }
}

AssertionFailedError는 TestCase에서 제공하는 assert 메서드에 의해 트리거됩니다.

JUnit은 다양한 목적을 위해 일련의 assert 메서드를 제공합니다.
다음은 가장 간단한 것입니다.

protected void assertTrue (boolean condition) {
 if (! condition)
 throw new AssertionFailedError ();
}

AssertionFailedError는 클라이언트 (TestCase 내부의 테스트 메서드)가 포착하기위한 것이 아니라 템플

릿 메서드 TestCase.run () 내부에 있습니다. 따라서 오류에서 AssertionFailedError를 파생시킵니다.

공용 클래스 AssertionFailedError는 오류 {
 public AssertionFailedError () {}
}

를 확장합니다. TestResult에서 오류를 수집하는 방법은 다음과 같습니다.

공개 동기화 무효 addError (테스트 테스트, Throwable t) {
 fErrors.addElement (new TestFailure (test, t));
}

공개 동기화 무효 addFailure (테스트 테스트, Throwable t) {
 fFailures.addElement (new TestFailure (test, t));
}

TestFailure는 나중에보고 할 수 있도록 실패한 테스트와 신호 된 예외를 함께 바인딩하는 작은 프레임
워크 내부 도우미 클래스입니다.

공용 클래스 TestFailure는 Object {
 protected Test fFailedTest를 확장합니다 .

 보호 된 Throwable fThrownException;
}

수집 매개 변수의 표준 형식은 수집 매개 변수를 각 메소드에 전달해야합니다. 이 조언을 따랐다면 각 테
스트 방법에는 TestResult에 대한 매개 변수가 필요합니다. 이로 인해 이러한 메서드 서명이 “오염”됩니
다. 예외를 사용하여 실패를 알리는 자비로운 부작용으로 이러한 서명 오염을 피할 수 있습니다. 테스트
케이스 메서드 또는 여기에서 호출 된 도우미 메서드는 TestResult에 대해 알 필요없이 예외를 throw 할
수 있습니다. 여기에 MoneyTest 제품군의 샘플 테스트 방법이 있습니다. 테스트 방법이 TestResult에 대
해 알 필요가없는 방법을 보여줍니다.

public void testMoneyEquals () {
 assertTrue (! f12CHF.equals (null));
 assertEquals (f12CHF, f12CHF);

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+object
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2026/02/08 22:18 7/11 JUnit A Cook's Tour

문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12 - http://rwiki.repia.com/

 assertEquals (f12CHF, new Money (12, "CHF"));
 assertTrue (! f12CHF.equals (f14CHF));
}

JUnit은 TestResult의 다양한 구현과 함께 제공됩니다.
기본 구현은 실패 및 오류 수를 계산하고 결과를 수집합니다.
TextTestResult는 결과를 수집하여 텍스트 형식으로 표시합니다.

마지막으로 UITestResult는 그래픽 테스트 상태를 업데이트하기 위해 JUnit Test Runner의 그
래픽 버전에서 사용됩니다.
TestResult는 프레임 워크의 확장 점입니다.

클라이언트는 자신의 사용자 정의 TestResult 클래스를 정의 할 수 있습니다.

예를 들어 HTMLTestResult는 결과를 HTML문서로 보고 합니다.

3.4 어리석은 하위 클래스 없음-TestCase 다시

테스트를 나타 내기 위해 Command를 적용했습니다.

명령은이를 호출하기 위해 execute () (TestCase에서 run ()라고 함)와 같은 단일 메소드에 의
존합니다.
이 간단한 인터페이스를 통해 동일한 인터페이스를 통해 명령의 다른 구현을 호출 할 수 있습니다.

일반적으로 테스트를 실행하려면 인터페이스가 필요합니다.
그러나 모든 테스트 케이스는 동일한 클래스에서 다른 메소드로 구현됩니다.
이것은 클래스의 불필요한 확산을 방지합니다.
주어진 테스트 케이스 클래스는 각각 단일 테스트 케이스를 정의하는 다양한 메소드를 구현할 수 있습
니다.
각 테스트 케이스에는 testMoneyEquals 또는 testMoneyAdd와 같은 설명 이름이 있습니다.
테스트 케이스는 간단한 명령 인터페이스를 따르지 않습니다.
동일한 Command 클래스의 다른 인스턴스는 다른 메서드를 사용하여 호출해야합니다.
따라서 우리의 다음 문제는 테스트 호출자의 관점에서 모든 테스트 케이스를 동일하게 만드는 것입니
다.

사용 가능한 디자인 패턴으로 해결 된 문제를 검토하면 어댑터 패턴이 떠 오릅니다.
어댑터에는 "클래스의 인터페이스를 클라이언트가 기대하는 다른 인터페이스로 변환"의도가 있습니다.
이것은 좋은 일치처럼 들립니다.
어댑터는 이를 수행하는 다양한 방법을 알려줍니다.
그중 하나는 인터페이스를 조정하기 위해 서브 클래 싱을 사용하는 클래스 어댑터입니다.
예를 들어 testMoneyEquals를 runTest에 적용하려면 MoneyTest의 하위 클래스를 구현하고

runTest를 재정의하여 testMoneyEquals를 호출합니다.

공개 클래스 TestMoneyEquals는 MoneyTest를 확장합니다 {
 public TestMoneyEquals () {super ("testMoneyEquals"); }
 보호 된 무효 runTest () {testMoneyEquals (); }
}

서브 클래 싱을 사용하려면 각 테스트 케이스에 대해 서브 클래스를 구현해야합니다. 이것은 테스터에게
추가적인 부담을줍니다. 이것은 프레임 워크가 테스트 케이스를 가능한 한 간단하게 추가해야한다는
JUnit 목표에 위배됩니다. 또한 각 테스트 방법에 대한 하위 클래스를 만들면 클래스가 부풀어집니다. 하

나의 방법 만있는 많은 클래스는 비용이 들지 않으며 의미있는 이름을 찾기가 어렵습니다. Java는 클래

스 이름 지정 문제에 대한 흥미로운 Java 관련 솔루션을 제공하는 익명 내부 클래스를 제공합니다. 익명
의 내부 클래스를 사용하면 클래스 이름을 만들지 않고도 어댑터를 만들 수 있습니다.

 TestCase test = new MoneyTest ("testMoneyEquals") {
 protected void runTest () {testMoneyEquals (); }

Last update:
2022/03/10
19:52

wiki:java:junit:junit_a_cook_s_tour http://rwiki.repia.com/doku.php?id=wiki:java:junit:junit_a_cook_s_tour&rev=1598933127

http://rwiki.repia.com/ Printed on 2026/02/08 22:18

 };

이것은 전체 서브 클래 싱보다 훨씬 편리합니다. 개발자의 부담을 감수하면서 컴파일 타임 유형 검사를
유지합니다. 스몰 토크 모범 사례 패턴은 플러그 형 동작 이라는 공통 제목 아래에서 다르게 동작하는 여
러 인스턴스의 문제에 대한 또 다른 솔루션을 설명 합니다. 아이디어는 서브 클래 싱없이 다른 로직을 수
행하도록 매개 변수화 할 수있는 단일 클래스를 사용하는 것입니다. 가장 간단한 형태의 플러그 형 동작
은 플러그 형 선택기 입니다. Pluggable Selector는 인스턴스 변수에 Smalltalk 메소드 선택기를 저장합

니다. 이 아이디어는 스몰 토크에만 국한되지 않습니다. Java에도 적용됩니다. Java에는 메소드 선택자

개념이 없습니다. 그러나 Java 리플렉션 API를 사용하면 메서드 이름을 나타내는 문자열에서 메서드를

호출 할 수 있습니다. 이 기능을 사용하여 Java에서 플러그 형 선택기를 구현할 수 있습니다. 제쳐두고,
우리는 일반적으로 일반 애플리케이션 코드에서 리플렉션을 사용하지 않습니다. 우리의 경우 우리는 인
프라 프레임 워크를 다루고 있으므로 반사 모자를 쓰는 것이 좋습니다.

JUnit은 클라이언트에게 플러그 형 선택기를 사용하거나 위에 표시된대로 익명 어댑터 클래스를 구현할

수있는 옵션을 제공합니다. 이를 위해 runTest 메서드의 기본 구현으로 플러그 형 선택기를 제공합니다.
이 경우 테스트 케이스의 이름은 테스트 방법의 이름과 일치해야합니다. 리플렉션을 사용하여 아래와 같
이 메서드를 호출합니다. 먼저 Method 객체를 찾습니다. 메소드 객체가 있으면이를 호출하고 인수를 전
달할 수 있습니다. 테스트 메서드는 인수를받지 않기 때문에 빈 인수 배열을 전달할 수 있습니다.

protected void runTest () throws Throwable {
 Method runMethod = null;
 try {
 runMethod = getClass (). getMethod (fName, new Class [0]);
 } catch (NoSuchMethodException e) {
 assertTrue ("Method \" "+ fName +"\ "찾을 수 없음", false);
 }
 try {
 runMethod.invoke (this, new Class [0]);
 }
 // InvocationTargetException 및 IllegalAccessException 포착

}

JDK 1.1 리플렉션 API를 사용하면 공용 메서드를 찾을 수만 있습니다. 이러한 이유로 테스트 메서드를

public으로 선언해야합니다. 그렇지 않으면 NoSuchMethodException이 발생합니다. 다음은 어댑터 및
플러그 형 선택기가 추가 된 다음 디자인 스냅 샷입니다.

그림 4 : TestCase는 익명 내부 클래스 또는 플러그 형 선택기가있는 어댑터를 적용합니다.

3.5 하나 또는 여러 개에 신경 쓰지 마십시오-TestSuite

시스템 상태에 대한 확신을 얻으려면 많은 테스트를 실행해야합니다.
지금까지 JUnit은 단일 테스트 케이스를 실행하고 테스트 결과에 결과를보고 할 수 있습니다.
다음 과제는 다양한 테스트를 실행할 수 있도록 확장하는 것입니다.
이 문제는 테스트 호출자가 하나 또는 여러 테스트 케이스를 실행하는지에 대해 신경 쓸 필요가 없을
때 쉽게 해결할 수 있습니다.
이러한 상황에서 가장 많이 사용되는 패턴은 Composite입니다.
"객체를 트리 구조로 구성하여 부분 전체 계층을 나타냅니다.
Composite를 사용하면 클라이언트가 개별 객체와 객체 구성을 균일하게 처리 할 수 ��있습니다."
부분 전체 계층 구조에 대한 요점은 여기서 중요합니다.

테스트 스위트 스위트를 지원하려고합니다.

Composite는 다음 참가자를 소개합니다.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+method
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+nosuchmethodexception

2026/02/08 22:18 9/11 JUnit A Cook's Tour

문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12 - http://rwiki.repia.com/

 구성 요소 : 테스트와 상호 작용하는 데 사용할 인터페이스를 선언합니다.
 복합 :이 인터페이스를 구현하고 테스트 모음을 유지합니다.
 Leaf : 컴포넌트 인터페이스를 준수하는 컴포지션의 테스트 케이스를 나타냅니다.
이 패턴은 단일 및 복합 객체에 대한 공통 인터페이스를 정의하는 추상 클래스를 도입하도록 알려줍니
다.
클래스의 주요 목적은 인터페이스를 정의하는 것입니다. Java에서 Composite를 적용 할 때 우리는
추상 클래스가 아닌 인터페이스를 정의하는 것을 선호합니다. 인터페이스를 사용하면 테스트를 위해
JUnit을 특정 기본 클래스로 커밋하지 않아도됩니다. 필요한 것은 테스트가이 인터페이스를 준수하는
것입니다. 따라서 패턴 설명을 조정하고 테스트 인터페이스를 소개합니다.

public interface Test {

 public abstract void run (TestResult result);

} TestCase는 Composite의 Leaf에 해당하며 위에서 본 것처럼이 인터페이스를 구현합니다. 다음으로 복

합 참가자를 소개합니다. 클래스 이름을 TestSuite로 지정합니다. TestSuite는 벡터에 자식 테스트를 유
지합니다.

공용 클래스 TestSuite 는 Test {

 private Vector fTests = new Vector ();

} run () 메서드는 자식에게 위임합니다. public void run (TestResult result) {

 for (Enumeration e = fTests.elements (); e.hasMoreElements ();) {
 Test test = (Test) e.nextElement ();
 test.run (결과);

 }

}

그림 5 : TestSuite는 Composite 적용

마지막으로 클라이언트는 테스트를 스위트에 추가 할 수 있어야하며 addTest 메소드를 사용하여 수행
할 수 있습니다.

public void addTest (테스트 테스트) {

 fTests.addElement (test);

} 위의 모든 코드가 테스트 인터페이스에만 의존하는 방식에 유의하십시오. TestCase와 TestSuite는 모

두 Test 인터페이스를 따르기 때문에 테스트 스위트 모음을 재귀 적으로 구성 할 수 있습니다. 모든 개발

자는 자신 만의 TestSuite를 만들 수 있습니다. 이러한 제품군으로 구성된 TestSuite를 생성하여 모두 실

행할 수 있습니다. 다음은 TestSuite를 만드는 예입니다.

공개 정적 테스트 스위트 () {

 TestSuite 스위트 = new TestSuite ();
 suite.addTest (new MoneyTest ("testMoneyEquals"));
 suite.addTest (new MoneyTest ("testSimpleAdd"));

}

Last update:
2022/03/10
19:52

wiki:java:junit:junit_a_cook_s_tour http://rwiki.repia.com/doku.php?id=wiki:java:junit:junit_a_cook_s_tour&rev=1598933127

http://rwiki.repia.com/ Printed on 2026/02/08 22:18

이것은 잘 작동하지만 모든 테스트를 스위트에 수동으로 추가해야합니다. JUnit의 얼리 어답터들은 이것

이 어리 석다고 말했습니다. 새로운 테스트 케이스를 작성할 때마다이를 static suite () 메소드에 추가해
야합니다. 그렇지 않으면 실행되지 않습니다. 테스트 케이스 클래스를 인수로 취하는 편리한 생성자를
TestSuite에 추가했습니다. 그 목적은 테스트 메서드를 추출하고이를 포함하는 제품군을 만드는 것입니

다. 테스트 메서드는 접두사 “test”로 시작하고 인수를 사용하지 않는 간단한 규칙을 따라야합니다. 편의
생성자는이 규칙을 사용하여 테스트 방법을 찾기 위해 리플렉션을 사용하여 테스트 개체를 구성합니다.
이 생성자를 사용하면 위의 코드가 다음과 같이 단순화됩니다. public static Test suite () {

 return new TestSuite (MoneyTest.class);

} The original way is still useful when you want to run a subset of the test cases only. 3.6 Summary

We are at the end of our cook’s tour through JUnit. The following figure shows the design of JUnit at a
glance explained with patterns.

Figure 6: JUnit Patterns Summary

Notice how TestCase, the central abstraction in the framework, is involved in four patterns. Pictures of
mature object designs show this same “pattern density”. The star of the design has a rich set of
relationships with the supporting players.

Here is another way of looking at all of the patterns in JUnit. In this storyboard you see an abstract
representation of the effect of each of the patterns in turn. So, the Command pattern creates the
TestCase class, the Template Method pattern creates the run method, and so on. (The notation of the
storyboard is the notation of figure 6 with all the text deleted).

Figure 7: JUnit Pattern Storyboard

One point to notice about the storyboard is how the complexity of the
picture jumps when we apply Composite. This is pictorial corroboration for
our intuition that Composite is a powerful pattern, but that it "complicates
the picture." It should therefore be used with caution.

4. 결론 To conclude, let’s make some general observations:

Patterns

We found discussing the design in terms of patterns to be invaluable, both
as we were developing the framework and as we try to explain it to others.
You are now in a perfect position to judge whether
describing a framework with patterns is effective. If you liked the
discussion above, try the same style of presentation for your own system.
Pattern density

There is a high pattern "density" around TestCase, which is the key
abstraction of JUnit. Designs with high pattern density are easier to use
but harder to change. We have found that such a high pattern
density around key abstractions is common for mature frameworks. The
opposite should be true of immature frameworks - they should have low
pattern density. Once you discover what problem you are really
solving, then you can begin to "compress" the solution, leading to a denser

2026/02/08 22:18 11/11 JUnit A Cook's Tour

문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12 - http://rwiki.repia.com/

and denser field of patterns where they provide leverage.
Eat your own dog food

As soon as we had the base unit testing functionality implemented, we
applied it ourselves. A TestTest verifies that the framework reports the
correct results for errors, successes, and failures. We found
this invaluable as we continued to evolve the design of the framework. We
found that the most challenging application of JUnit was testing its own
behavior.
Intersection, not union

There is a temptation in framework development to include every feature you
can. After all, you want to make the framework as valuable as possible.
However, there is a counteracting force- developers have to
decide to use your framework. The fewer features the framework has, the
easier it is to learn, the more likely a developer will use it. JUnit is
written in this style. It implements only those features
absolutely essential to running tests- running suites of tests, isolating
the execution of tests from each other, and running tests automatically.
Sure, we couldn’t resist adding some features but we were
careful to put them into their own extensions package (test.extensions). A
notable member of this package is a TestDecorator allowing execution of
additional code before and after a test.
Framework writers read their code

We spent far more time reading the JUnit code than we spent writing it, and
nearly as much time removing duplicate functionality as we spent adding new
functionality. We experimented aggressively with the
design, adding new classes and moving responsibility around in as many
different ways as we could imagine. We were rewarded (and are still being
rewarded) for our monomania by a continuous flow of insights
into JUnit, testing, object design, framework development, and opportunities
for further articles.
The latest version of JUnit can be downloaded from http://www.junit.org.

5. Acknowledgements

Thanks to John Vlissides, Ralph Johnson, and Nick Edgar for careful reading
and gentle correction.

From:
http://rwiki.repia.com/ - 문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12

Permanent link:
http://rwiki.repia.com/doku.php?id=wiki:java:junit:junit_a_cook_s_tour&rev=1598933127

Last update: 2022/03/10 19:52

http://rwiki.repia.com/
http://rwiki.repia.com/doku.php?id=wiki:java:junit:junit_a_cook_s_tour&rev=1598933127

	JUnit A Cook's Tour

