
2026/02/09 01:10 1/8 자바 데이터 타입, 변수 그리고 배열

문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12 - http://rwiki.repia.com/

자바 데이터 타입, 변수 그리고 배열

자바의 프리미티브 타입, 변수 그리고 배열을 사용하는 방법을 익힙니다.

프리미티브 타입 종류와 값의 범위 그리고 기본 값

우리가 주로 사용하는 값의 종류는 크게 문자와 숫자로 나눌 수 있으며 여기서 숫자는 다시 정수
와 실수로 나뉜다.

기본형은 모두 8가지의 타입(자료형)이 있으며, 크게 논리형, 문자형, 정수형, 실수형으로 구분된
다.

타입 종류

정수형은 가장 많이 사용되기에 타입이 4가지나 제공된다.

각 타입별로 범위가 다르기에 범위에 맞는 값을 사용하면 된다.

타입 범위

boolean은 true와 false 두 값만 표현하면 되기에 1바이트면 충분하다.

기본 값 : false
char는 자바에서 유니코드(2 byte문자 체계)를 사용하기에 2byte

기본 값 : \u0000
byte는 크기가 1byte이므로 byte.

기본 값 : 0
int(4 byte)를 기준으로 짧게는 (2 byte) 길게는 (8 byte)를 취사선택한다.

기본 값 : 0
float은 실수값을 부동소수점(floating-point)방식으로 저장하기 때문에 float

기본 값 : 0.0F
double은 float보다 두 배의 크기(8byte)를 갖기 때문에 double

기본 값 : 0.0

실수형의 정밀도

http://rwiki.repia.com/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:1.png
http://rwiki.repia.com/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:2.png
http://rwiki.repia.com/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:3.png
http://rwiki.repia.com/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:4.png

Last update: 2022/03/10
19:52 wiki:java:java-lecture:2week http://rwiki.repia.com/doku.php?id=wiki:java:java-lecture:2week&rev=1610714429

http://rwiki.repia.com/ Printed on 2026/02/09 01:10

실수형은 정수형과 저장 방식이 다르기에 같은 크기라도 훨씬 큰 값을 표현할 수는 있지만, 오차가

발생할 수 있다. 그래서 정밀도(precision)가 중요한데, 정밀도가 높을수록 오차의 범위가 줄어든
다.
위 표를 보면 float의 정밀도는 7자리로 10진수로 7자리의 수를 오차없이 저장할 수 있다는 의

미다. 그렇기에 사용할 변수의 값의 범위가 7자리를 넘는다면 정밀도를 고려해 double 타입을 사
용해야 한다.

프리미티브 타입과 레퍼런스 타입

자료형은 크게 '기본형(Primitive Type)' 과 참조형(Reference Type)으로 나눌 수 있다.

기본형(Primitive Type) : 논리형(boolean), 문자형(char), 정수형(byte, short, int, long), 실수

형(float, double) 계산을 위한 실제 값을 저장한다.

참조형(reference type) : 객체의 주소를 저장한다. 기본적으로 Java.lang.Object를 상속받을
경우 참조형이 된다. 즉, 기본형을 제외하고는 참조형이라 생각해도 된다.

좀 더 얘기하자면 기본형은 메모리영역의 스택영역에 실제 값들이 저장된다면, 참조형은 실제 인스턴스
는 힙영역에 생성되있고, 그 영역의 주소를 스택영역에서 저장하고 있다고 보면 된다.

리터럴

� 그 자체로 값을 의미하는 것

리터럴은 데이터 그 자체를 의미한다.

아래 그림에서 2020이 리터럴이다.

즉, 2020, 123, 3.14, “ABC” 와 같은 값들을 리터럴이라고 하는데 본래 이러한 값들은 상수라 불러
야 하지만 프로그래밍에서는 상수를 '값을 한 번 저장하면 변경할 수 없는 저장공간'으로 정의했기
때문에 이와 구분하기 위해서 리터럴이라는 용어를 사용한다.

그러니 리터럴은 기존에 알고있던 상수의 다른 이름이라고 볼 수 있다.

� 인스턴스는 리터럴이 될 수 있을까?

인스턴스안의 값의 불변성(Imutable) 이 보장된다면 객체 리터럴이 될 수 있다.(불변 클래

스(imutable class))

하지만 이렇게 불변성을 보장하도록 설계된 클래스를 제외하고 보통의 인스턴스는 동적으로 사용
되고 내용이 변할 수 있기 때문에 객체 리터럴이 될 수 없다.

�Ex: Java.lang.String 이나 java.awt.Color 같은 클래스는 내용이 변해야 하는 상황이면
새로운 객체를 만들어 내용의 불변성이 보장되기에 객체 리터럴이라 부른다.

http://rwiki.repia.com/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:5.png

2026/02/09 01:10 3/8 자바 데이터 타입, 변수 그리고 배열

문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12 - http://rwiki.repia.com/

변수 선언 및 초기화하는 방법

변수 선언

변수를 사용하기위해서는 우선 변수를 선언해야 하며 아래 그림과 같이 선언합니다.

변수 타입 : 변수에 저장될 값이 어떤 타입(type)인지 지정하는 것.

변수 이름 : 변수에 붙힌 이름. 변수가 값을 저장할 수 있는 메모리 공간을 의미하므로 변수 이름은
이 메모리 공간에 이름을 붙혀주는 것.

이렇게 변수를 선언하면, 메모리의 빈 공간에 '변수타입'에 알맞은 크기의 저장공간이 확보되고, 변수 이
름을 붙혀서 이 이름을 통해 해당 저장공간을 사용할 수 있게 된다.

변수 초기화

� 변수를 사용하기 전 처음으로 값을 저장하는 것

변수를 선언하면 메모리에 변수의 저장공간이 확보되어있지만, 여러 프로그램에 의해 공유되기 때문에
이 공간안에 어떠한 값이 저장되어있을지는 알 수 없다.

그렇기에 초기화(initialization)를 해줘야 한다.

변수에 값을 저장할 때는 대입 연산자 =을 사용한다. 위 그림을 보면 year라는 int 변수타입과

year라는 변수 이름을 가진 변수에게 2020이라는 값을 대입한다.

즉, 대입연산자의 우측의 있는 값을 좌측에 있는 변수에 저장한다.

변수의 종류에 따라 변수의 초기화를 생략할 수 있는 경우도 있지만, 변수는 사용되기 전에 적절한
값으로 초기화 하는 것이 좋다.

�지역변수는 사용하기 전 반드시 초기화 해야 한다.

그밖의 초기화의 종류

지역변수는 변수의 초기화로 충분하지만, 멤버변수의 초기화는 몇가지 방법이 더 있다.

1. 명시적 초기화(explicit initialization)

: 변수 선언과 동시에 초기화 하는 것을 명시적 초기화라 하는데, 위에서 소개한 변수의 초기화와 동일하
며, 클래스 및 지역변수 어디서든 사용가능하며 여러 초기화 방법중 최우선적으로 고려한다.

http://rwiki.repia.com/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:6.png
http://rwiki.repia.com/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:7.png
http://rwiki.repia.com/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:8.png

Last update: 2022/03/10
19:52 wiki:java:java-lecture:2week http://rwiki.repia.com/doku.php?id=wiki:java:java-lecture:2week&rev=1610714429

http://rwiki.repia.com/ Printed on 2026/02/09 01:10

2. 초기화 블럭(initialization block)

: 초기화 블럭은 클래스 초기화 블럭과 인스턴스 초기화 블럭으로 나뉜다.

class ExplicitInitialization {
 static {
 /*클래스 초기화 블럭 */
}
{
 /*인스턴스 초기화 블럭*/
}
}

클래스 초기화 블럭 : 클래스변수의 복잡한 초기화에 사용. 블럭내에서는 로직도 추가할 수 있기
때문에 명시적 초기화만으로 부족할 때 사용한다.

인스턴스 초기화 블럭 : 인스턴스 변수의 복잡한 초기화에 사용. 모든 생성자가 공통으로 수행해야
하는 로직이 있을 때 사용한다.

3. 생성자(constructor)

: 생성자는 말 그대로 인스턴스 생성시에 생성자 함수 안에서 명시적 초기화가 이뤄진다.

변수의 스코프와 라이프타임

스코프는 한글로 풀어보자면 범위이다. 즉, 변수의 스코프는 변수의 범위라는건데 이 범위는 키워드와
선언된 블럭위치에 따라서 달라진다.

선언위치에 따른 변수의 종류

class A {
 int instanceValue; //인스턴스 변수

 static int classValue;//클래스 변수(static, 공유 변수)

 void method(){
 int localValue = 0; //지역 변수

 }
}

클래스 내부에 선언되는 변수를 멤버변수라 한다. 여기서 static키워드가 붙은 변수를 클래스 변수,
static 키워드가 없는 변수를 인스턴스 변수라 한다. 그리고 메서드 내부에 있는 localValue는 지역변수이
다. 이 셋 모두의 범위와 생성시기는 다르다.

1. 변수의 종류와 특징

http://rwiki.repia.com/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:9.png

2026/02/09 01:10 5/8 자바 데이터 타입, 변수 그리고 배열

문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12 - http://rwiki.repia.com/

1) 인스턴스 변수(instance variable)

클래스 영역에 선언되며, 클래스의 인스턴스를 생성할 때 만들어진다. 그렇기에 인스턴스 변수 값
을 읽어오거나 저장하기 위해서는 먼저 인스턴스를 생성해야 한다.

인스턴스 별로 별도의 저장공간을 확보하기에 인스턴스별 다른 값을 가질 수 있다.

Ex: 아이스크림이라는 클래스의 돼지바 라는 인스턴스는 1000원이라는 가격과 쿠키라는 속성을
가진다.

2) 클래스 변수(class variable)

멤버변수에 static 키워드를 붙힐 경우 클래스 변수가 되며 한 클래스의 모든 인스턴스가 값을
공유한다.

클래스 변수는 인스턴스를 생성하지 않고 클래스가 메모리에 올라갔을때 선언되기 때문에 인스턴
스에서는 언제든 바로 접근해서 사용할 수 있다.

그렇기에 어디서나 접근 할 수 있는 전역변수(global variable)의 성격을 가진다.

class LottoTicket {
 public static final LOTTO_PRICE = 1000;
 ...
}
public static void main(String[] args) {
 //LottoPrice: 1000
 System.out.println("LottoPrice: "+ LottoTicket.LOTTO_PRICE);
}

3) 지역 변수(local variable)

메소드 내에 선언되어 메소드 내에서만 사용 가능하며 메소드 종료와 함께 소멸된다.

for문이나 while문같은 반복문도 동일하게 블럭내에서 선언된 지역변수는, 블럭을 벗어나면 소멸
된다.

public static void main(String[] args) {
 for (int i = 0; i < 10; i++) {
 System.out.println("i = " + i);
 }
 System.out.println("i = " + i);//Checked Exception 발생

}

초기화 시기와 순서(라이프타임)

1. 초기화 시점

Last update: 2022/03/10
19:52 wiki:java:java-lecture:2week http://rwiki.repia.com/doku.php?id=wiki:java:java-lecture:2week&rev=1610714429

http://rwiki.repia.com/ Printed on 2026/02/09 01:10

⇒ 프로그램 실행도중 클래스에 대한 정보가 요구될 때 클래스는 메모리에 로딩된다.
(만약 이미 메모리에 로딩되어 있다면 또다시 로딩하지는 않는다.)

2. 초기화 순서

3. 예제

class InitTest {
 static int classValue = 1;
 int instanceValue = 1;
 static {
 classValue = 2;
 }
 InitTest() {
 instanceValue = 3;
 }
}

클래스변수 초기화(1~3): 클래스가 처음 메모리에 로딩될 때 차례대로 수행된다.

인스턴스변수 초기화(4~7): 인스턴스를 생성할 때 차례대로 수행한다.

클래스 변수는 항상 인스턴스 변수보다 먼저 생성및 초기화된다.

타입 변환, 캐스팅 그리고 타입 프로모션

타입 변환

� 변수 또는 상수의 타입을 다른 타입으로 변환하는 것

프로그램을 작성하다보면 서로 다른 타입간의 연산을 수행해야 하는 경우가 있다. 이럴 때 연산을 수행
하기 전 서로의 타입을 일치시켜야하는데, 이렇게 변수나 리터럴의 타입을 다른 타입으로 변환하는 것을
형변환이라 한다.

형변환 방법

� (type)operand

변환할 변수나 리터럴 앞에 타입을 괄호와 함께 붙혀주기만 하면 된다. 이 때 형변환 연산자는 그
저 피연산자의 값을 읽어서 지정된 타입으로 형변환하고 그 결과를 반환할 뿐이기에 기존의 변수

http://rwiki.repia.com/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:10.png
http://rwiki.repia.com/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:11.png
http://rwiki.repia.com/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:12.png

2026/02/09 01:10 7/8 자바 데이터 타입, 변수 그리고 배열

문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12 - http://rwiki.repia.com/

나 리터럴이 변화되지는 않는다.

double value = 123.456;
int score = (int)value;
System.out.println(value == 123.456); //true

기본형(primitive type) 변수는 boolean을 제외한 나머지 타입은 서로 형변환이 가능하다.

하지만, 타입간에는 각각이 가지는 범위(크기)가 다르기 때문에 형변환을 통해 크기의 차이만큼

값이 잘려나감으로써 값 손실(loss of data)이 발생할 수 있다.

자동 형변환

경우에 따라 형변환을 생략할 수 있다. 그래도 컴파일러가 생략된 형변환을 자동으로 추가한다.

하지만, 저장될 변수 타입의 범위가 더 작은 경우 에러가 발생하는데 이는 더 작은 값으로 할당되
며 값 손실이 발생할 수 있기 때문이며 이를 이미 알고 명시적으로 형변환을 작성해주면 에러를
발생시키지 않는다.

byte b = 10000; //에러 발생. byte의 범위는 -128~127이다.

byte c = (byte)10000; //명시적 형변환으로 에러가 발생하지 않는다.

자동 형변환 규칙

� 기존의 값을 최대한 보존할 수 있는 타입으로 자동 형변환한다.

표현범위가 좁은 타입에서 넓은 타입으로 형변환 할 때 값 손실이 없기에 두 타입 중 표현범위가
더 넓은 쪽으로 형변환이 된다.

기본형의 자동 형변환의 방향

1차 및 2차 배열 선언하기

타입 추론, var

Ref

https://catsbi.oopy.io/6541026f-1e19-4117-8fef-aea145e4fc1b
https://github.com/whiteship/live-study/issues/2

와프

http://rwiki.repia.com/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:13.png
https://catsbi.oopy.io/6541026f-1e19-4117-8fef-aea145e4fc1b
https://github.com/whiteship/live-study/issues/2
http://rwiki.repia.com/doku.php?id=tag:%EC%99%80%ED%94%84&do=showtag&tag=%EC%99%80%ED%94%84

Last update: 2022/03/10
19:52 wiki:java:java-lecture:2week http://rwiki.repia.com/doku.php?id=wiki:java:java-lecture:2week&rev=1610714429

http://rwiki.repia.com/ Printed on 2026/02/09 01:10

From:
http://rwiki.repia.com/ - 문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12

Permanent link:
http://rwiki.repia.com/doku.php?id=wiki:java:java-lecture:2week&rev=1610714429

Last update: 2022/03/10 19:52

http://rwiki.repia.com/
http://rwiki.repia.com/doku.php?id=wiki:java:java-lecture:2week&rev=1610714429

	자바 데이터 타입, 변수 그리고 배열
	프리미티브 타입 종류와 값의 범위 그리고 기본 값
	타입 종류
	타입 범위
	실수형의 정밀도

	프리미티브 타입과 레퍼런스 타입
	리터럴
	변수 선언 및 초기화하는 방법
	변수 선언
	변수 초기화
	그밖의 초기화의 종류
	1. 명시적 초기화(explicit initialization)
	2. 초기화 블럭(initialization block)
	3. 생성자(constructor)

	변수의 스코프와 라이프타임
	선언위치에 따른 변수의 종류
	1. 변수의 종류와 특징

	초기화 시기와 순서(라이프타임)
	1. 초기화 시점
	2. 초기화 순서
	3. 예제

	타입 변환, 캐스팅 그리고 타입 프로모션
	타입 변환
	형변환 방법
	자동 형변환
	자동 형변환 규칙

	1차 및 2차 배열 선언하기
	타입 추론, var
	Ref

