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자바 데이터 타입, 변수 그리고 배열

자바의 프리미티브 타입, 변수 그리고 배열을 사용하는 방법을 익힙니다.

프리미티브 타입 종류와 값의 범위 그리고 기본 값

우리가 주로 사용하는 값의 종류는 크게 문자와 숫자로 나눌 수 있으며 여기서 숫자는 다시 정수
와 실수로 나뉜다.

기본형은 모두 8가지의 타입(자료형)이 있으며, 크게 논리형, 문자형, 정수형, 실수형으로 구분된
다.

타입 종류

정수형은 가장 많이 사용되기에 타입이 4가지나 제공된다.

각 타입별로 범위가 다르기에 범위에 맞는 값을 사용하면 된다.

타입 범위

boolean은 true와 false 두 값만 표현하면 되기에 1바이트면 충분하다.

기본 값 : false
char는 자바에서 유니코드(2 byte문자 체계)를 사용하기에 2byte

기본 값 : \u0000
byte는 크기가 1byte이므로 byte.

기본 값 : 0
int(4 byte)를 기준으로 짧게는 (2 byte) 길게는 (8 byte)를 취사선택한다.

기본 값 : 0
float은 실수값을 부동소수점(floating-point)방식으로 저장하기 때문에 float

기본 값 : 0.0F
double은 float보다 두 배의 크기(8byte)를 갖기 때문에 double

기본 값 : 0.0

실수형의 정밀도
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실수형은 정수형과 저장 방식이 다르기에 같은 크기라도 훨씬 큰 값을 표현할 수는 있지만, 오차가

발생할 수 있다. 그래서 정밀도(precision)가 중요한데, 정밀도가 높을수록 오차의 범위가 줄어든
다.
위 표를 보면 float의 정밀도는 7자리로 10진수로 7자리의 수를 오차없이 저장할 수 있다는 의

미다. 그렇기에 사용할 변수의 값의 범위가 7자리를 넘는다면 정밀도를 고려해 double 타입을 사
용해야 한다.

프리미티브 타입과 레퍼런스 타입

자료형은 크게 '기본형(Primitive Type)' 과 참조형(Reference Type)으로 나눌 수 있다.

기본형(Primitive Type) : 논리형(boolean), 문자형(char), 정수형(byte, short, int, long), 실수

형(float, double) 계산을 위한 실제 값을 저장한다.

참조형(reference type) : 객체의 주소를 저장한다. 기본적으로 Java.lang.Object를 상속받을
경우 참조형이 된다. 즉, 기본형을 제외하고는 참조형이라 생각해도 된다.

좀 더 얘기하자면 기본형은 메모리영역의 스택영역에 실제 값들이 저장된다면, 참조형은 실제 인스턴스
는 힙영역에 생성되있고, 그 영역의 주소를 스택영역에서 저장하고 있다고 보면 된다.

리터럴

� 그 자체로 값을 의미하는 것

리터럴은 데이터 그 자체를 의미한다.

아래 그림에서 2020이 리터럴이다.

즉, 2020, 123, 3.14, “ABC” 와 같은 값들을 리터럴이라고 하는데 본래 이러한 값들은 상수라 불러
야 하지만 프로그래밍에서는 상수를 '값을 한 번 저장하면 변경할 수 없는 저장공간'으로 정의했기
때문에 이와 구분하기 위해서 리터럴이라는 용어를 사용한다.

그러니 리터럴은 기존에 알고있던 상수의 다른 이름이라고 볼 수 있다.

� 인스턴스는 리터럴이 될 수 있을까?

인스턴스안의 값의 불변성(Imutable) 이 보장된다면 객체 리터럴이 될 수 있다.(불변 클래

스(imutable class))

하지만 이렇게 불변성을 보장하도록 설계된 클래스를 제외하고 보통의 인스턴스는 동적으로 사용
되고 내용이 변할 수 있기 때문에 객체 리터럴이 될 수 없다.

�Ex: Java.lang.String 이나 java.awt.Color 같은 클래스는 내용이 변해야 하는 상황이면
새로운 객체를 만들어 내용의 불변성이 보장되기에 객체 리터럴이라 부른다.

http://rwiki.repia.com/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:5.png


2026/02/09 01:10 3/8 자바 데이터 타입, 변수 그리고 배열

문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12 - http://rwiki.repia.com/

변수 선언 및 초기화하는 방법

변수 선언

변수를 사용하기위해서는 우선 변수를 선언해야 하며 아래 그림과 같이 선언합니다.

변수 타입 : 변수에 저장될 값이 어떤 타입(type)인지 지정하는 것.

변수 이름 : 변수에 붙힌 이름. 변수가 값을 저장할 수 있는 메모리 공간을 의미하므로 변수 이름은
이 메모리 공간에 이름을 붙혀주는 것.

이렇게 변수를 선언하면, 메모리의 빈 공간에 '변수타입'에 알맞은 크기의 저장공간이 확보되고, 변수 이
름을 붙혀서 이 이름을 통해 해당 저장공간을 사용할 수 있게 된다.

변수 초기화

� 변수를 사용하기 전 처음으로 값을 저장하는 것

변수를 선언하면 메모리에 변수의 저장공간이 확보되어있지만, 여러 프로그램에 의해 공유되기 때문에
이 공간안에 어떠한 값이 저장되어있을지는 알 수 없다.

그렇기에 초기화(initialization)를 해줘야 한다.

변수에 값을 저장할 때는 대입 연산자 =을 사용한다. 위 그림을 보면 year라는 int 변수타입과

year라는 변수 이름을 가진 변수에게 2020이라는 값을 대입한다.

즉, 대입연산자의 우측의 있는 값을 좌측에 있는 변수에 저장한다.

변수의 종류에 따라 변수의 초기화를 생략할 수 있는 경우도 있지만, 변수는 사용되기 전에 적절한
값으로 초기화 하는 것이 좋다.

�지역변수는 사용하기 전 반드시 초기화 해야 한다.

그밖의 초기화의 종류

지역변수는 변수의 초기화로 충분하지만, 멤버변수의 초기화는 몇가지 방법이 더 있다.

1. 명시적 초기화(explicit initialization)

: 변수 선언과 동시에 초기화 하는 것을 명시적 초기화라 하는데, 위에서 소개한 변수의 초기화와 동일하
며, 클래스 및 지역변수 어디서든 사용가능하며 여러 초기화 방법중 최우선적으로 고려한다.
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2. 초기화 블럭(initialization block)

: 초기화 블럭은 클래스 초기화 블럭과 인스턴스 초기화 블럭으로 나뉜다.

class ExplicitInitialization {
  static {
    /*클래스 초기화 블럭 */
}
{
    /*인스턴스 초기화 블럭*/
}
}

클래스 초기화 블럭 : 클래스변수의 복잡한 초기화에 사용. 블럭내에서는 로직도 추가할 수 있기
때문에 명시적 초기화만으로 부족할 때 사용한다.

인스턴스 초기화 블럭 : 인스턴스 변수의 복잡한 초기화에 사용. 모든 생성자가 공통으로 수행해야
하는 로직이 있을 때 사용한다.

3. 생성자(constructor)

: 생성자는 말 그대로 인스턴스 생성시에 생성자 함수 안에서 명시적 초기화가 이뤄진다.

변수의 스코프와 라이프타임

스코프는 한글로 풀어보자면 범위이다. 즉, 변수의 스코프는 변수의 범위라는건데 이 범위는 키워드와
선언된 블럭위치에 따라서 달라진다.

선언위치에 따른 변수의 종류

class A {
  int instanceValue; //인스턴스 변수

  static int classValue;//클래스 변수(static, 공유 변수)

  void method(){
    int localValue = 0; //지역 변수

  }
}

클래스 내부에 선언되는 변수를 멤버변수라 한다. 여기서 static키워드가 붙은 변수를 클래스 변수,
static 키워드가 없는 변수를 인스턴스 변수라 한다. 그리고 메서드 내부에 있는 localValue는 지역변수이
다. 이 셋 모두의 범위와 생성시기는 다르다.

1. 변수의 종류와 특징
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1) 인스턴스 변수(instance variable)

클래스 영역에 선언되며, 클래스의 인스턴스를 생성할 때 만들어진다. 그렇기에 인스턴스 변수 값
을 읽어오거나 저장하기 위해서는 먼저 인스턴스를 생성해야 한다.

인스턴스 별로 별도의 저장공간을 확보하기에 인스턴스별 다른 값을 가질 수 있다.

Ex: 아이스크림이라는 클래스의 돼지바 라는 인스턴스는 1000원이라는 가격과 쿠키라는 속성을
가진다.

2) 클래스 변수(class variable)

멤버변수에 static 키워드를 붙힐 경우 클래스 변수가 되며 한 클래스의 모든 인스턴스가 값을
공유한다.

클래스 변수는 인스턴스를 생성하지 않고 클래스가 메모리에 올라갔을때 선언되기 때문에 인스턴
스에서는 언제든 바로 접근해서 사용할 수 있다.

그렇기에 어디서나 접근 할 수 있는 전역변수(global variable)의 성격을 가진다.

class LottoTicket {
  public static final LOTTO_PRICE = 1000;
  ...
}
public static void main(String[] args) {
  //LottoPrice: 1000
  System.out.println("LottoPrice: "+ LottoTicket.LOTTO_PRICE);
}

3) 지역 변수(local variable)

메소드 내에 선언되어 메소드 내에서만 사용 가능하며 메소드 종료와 함께 소멸된다.

for문이나 while문같은 반복문도 동일하게 블럭내에서 선언된 지역변수는, 블럭을 벗어나면 소멸
된다.

public static void main(String[] args) {
      for (int i = 0; i < 10; i++) {
        System.out.println("i = " + i);
    }
    System.out.println("i = " + i);//Checked Exception 발생

}

초기화 시기와 순서(라이프타임)

1. 초기화 시점
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⇒ 프로그램 실행도중 클래스에 대한 정보가 요구될 때 클래스는 메모리에 로딩된다.
(만약 이미 메모리에 로딩되어 있다면 또다시 로딩하지는 않는다.)

2. 초기화 순서

3. 예제

class InitTest {
  static int classValue = 1;
  int instanceValue = 1;
  static {
      classValue = 2;
  }
  InitTest() {
      instanceValue = 3;
  }
}

클래스변수 초기화(1~3): 클래스가 처음 메모리에 로딩될 때 차례대로 수행된다.

인스턴스변수 초기화(4~7): 인스턴스를 생성할 때 차례대로 수행한다.

클래스 변수는 항상 인스턴스 변수보다 먼저 생성및 초기화된다.

타입 변환, 캐스팅 그리고 타입 프로모션

타입 변환

� 변수 또는 상수의 타입을 다른 타입으로 변환하는 것

프로그램을 작성하다보면 서로 다른 타입간의 연산을 수행해야 하는 경우가 있다. 이럴 때 연산을 수행
하기 전 서로의 타입을 일치시켜야하는데, 이렇게 변수나 리터럴의 타입을 다른 타입으로 변환하는 것을
형변환이라 한다.

형변환 방법

� (type)operand

변환할 변수나 리터럴 앞에 타입을 괄호와 함께 붙혀주기만 하면 된다. 이 때 형변환 연산자는 그
저 피연산자의 값을 읽어서 지정된 타입으로 형변환하고 그 결과를 반환할 뿐이기에 기존의 변수
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나 리터럴이 변화되지는 않는다.

double value = 123.456;
int score = (int)value;
System.out.println(value == 123.456); //true

기본형(primitive type) 변수는 boolean을 제외한 나머지 타입은 서로 형변환이 가능하다.

하지만, 타입간에는 각각이 가지는 범위(크기)가 다르기 때문에 형변환을 통해 크기의 차이만큼

값이 잘려나감으로써 값 손실(loss of data)이 발생할 수 있다.

자동 형변환

경우에 따라 형변환을 생략할 수 있다. 그래도 컴파일러가 생략된 형변환을 자동으로 추가한다.

하지만, 저장될 변수 타입의 범위가 더 작은 경우 에러가 발생하는데 이는 더 작은 값으로 할당되
며 값 손실이 발생할 수 있기 때문이며 이를 이미 알고 명시적으로 형변환을 작성해주면 에러를
발생시키지 않는다.

byte b = 10000; //에러 발생. byte의 범위는 -128~127이다.

byte c = (byte)10000; //명시적 형변환으로 에러가 발생하지 않는다.

자동 형변환 규칙

� 기존의 값을 최대한 보존할 수 있는 타입으로 자동 형변환한다.

표현범위가 좁은 타입에서 넓은 타입으로 형변환 할 때 값 손실이 없기에 두 타입 중 표현범위가
더 넓은 쪽으로 형변환이 된다.

기본형의 자동 형변환의 방향

1차 및 2차 배열 선언하기

타입 추론, var
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